MoO_2 (acac) $_2$ Complex as a Reagent for Oxidative Cleavage of vic-Diols

Kiyotomi KANEDA, * Kenichi MORIMOTO, and Toshinobu IMANAKA

Department of Chemical Engineering, Faculty of Engineering Science,

Osaka University, Toyonaka, Osaka 560

MoO₂(acac)₂-t-BuOOH system has high activity for oxidative cleavage of tertiary and secondary vic-diols. MoO₂(acac)₂ cleaves the diols to give carbonyl compounds in the absence of t-BuOOH.

We have reported that MoO₂(acac)₂ compound oxidatively cleaved olefinic double bonds in the presence of t-BuOOH.¹⁾ In relation to carbon-carbon bond cleavage reactions, we also found that the MoO₂(acac)₂-t-BuOOH system could induce the oxidative cleavage of vic-diols to give carbonyl compounds. The catalyst system has high activity for t- and/or s-diols, compared with diols involving primary hydroxy group. It should be noted that MoO₂(acac)₂ itself cleaves the carbon-carbon bonds of the diols in the absence of t-BuOOH.

Typical results for the diol oxidation using the MoO $_2$ (acac) $_2$ -t-BuOOH are summarized in Table 1. Various vic-diols gave ketones and carboxylic acids derived from cleavage of carbon-carbon bonds attached to hydroxy groups in high yields. Especially, di-t-diols are exclusively cleaved to give ketones. We confirmed that carboxylic acids were formed from the corresponding aldehydes. Diols with primary hydroxy group except styrene glycol and α -methylstyrene glycol gave low yields of expected carboxylic acids because overoxidation occurred. High reactivity for t- and s-diols might be due to facile formation of molybdenum-alkoxides from these diols. 2

We examined the metal effect on the cleavage reaction of styrene glycol in the presence of t-BuOOH. Other metals, e.g., TiO(acac)₂ and Zr(acac)₄ gave benzoic acid in low to moderate yields.³⁾ Solvents strongly affected this cleavage

Chemistry Letters, 1988

reaction: CCl, and chlorobenzene are good solvent.

The MoO₂(acac)₂ could cleave the carbon-carbon bonds of diols in the absence of t-BuOOH; the stoichiometric reaction of styrene glycol with MoO₂(acac)₂ gave 78% yield of benzaldehyde under a nitrogen atmosphere. We think that Mo(VI) species reacts with diols to give carbonyl compounds and Mo(IV) species, and in the catalytic reaction, the Mo(IV) is oxidized to the Mo(VI) by t-BuOOH.

This $\text{MoO}_2(\text{acac})_2$ -t-BuOOH catalyst system is one of useful reagents for oxidative cleavage of t- and s-vic-diols.⁴⁾

Table 1. Oxidation of vic-Dilos Using MoO₂(acac)-^tBuOOH System^{a)}

Substrate	Product(yield/%)	Substrate	Product
OH OH Ph-C-C-Ph Ph Ph	0 Ph-C-Ph ('96)	OH OH Ph-C-C-H CH ₃ H	Рh-С-СН ₃ (93)
СН ₃ -С-С-СН ₃	СН ₃ -С-СН ₃ (99)	OH OH Ph-C-C-H H H	Рh-C-ОН (83)
ОН	СООН (79) СООН	OH OH	Сн ₃ С-он (92)
OH OH	COOH (62)	OH OH OH	Сеон (59) С ₂ н ₅ с-он (37)

a) To a stirred solution of $\text{MoO}_2(\text{acac})_2(0.05 \text{ mmol})$ and diol(0.5 mmol) in chlorobenzene(10 ml) was added t-BuOOH(4 mmol) in chlorobenzene(5 ml) under N_2 . The resulting solution was stirred at 60 °C for 24 h. The oxidation products were analyzed by GLPC and ^1H NMR.

References

1) K.Jitsukawa, K.Kaneda, and S.Teranishi, J.Org.Chem., 48,389(1983). 2) Vanadium and molybdenum complexes favor t- and s-hydroxyls more than primary ones in the formation of metal alkoxides: R.K.Mittal and R.C.Mehrotra, Z.Anorg.Allg.Chem., 355,328(1967). 3) Zviely have reported that VO(acac)₂-t-BuOOH cleaved only di-t-diols: M.Zviely and E.Glotter, J.Chem.Soc., Perkin Trans. 1, 1986,229. 4) For typical examples of metal-catalyzed diol cleavage, see: a) G. de Vries and A.Schore, Tetrahedron Lett., 1968, 5689, Co-O₂; b) E.S.Huyser and L.G.Rose, J.Org.Chem., 37,851(1972), Ag-S₂O₈²⁻; c) D.H.Barton, J.Finet, B.Motherwell, and C.Pichon, Tetrahedron, 42,5627(1986), Bi-NBS; d) C.Venturello and M.Ricci, J.Org.Chem., 51,1599(1986), W-H₂O₂.